ОПРЕДЕЛЕНИЕ ФАКТОРОВ, ВЛИЯЮЩИХ НА ВОСПРОИЗВОДИМОСТЬ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ В АСИММЕТРИЧНОМ ЦИКЛЕ «КОЭРЦИТИВНЫЙ ВОЗВРАТ-НАМАГНИЧИВАНИЕ»

© 2024 г. <u>Данила Григорьевич Ксенофонтов^{1*}</u>, О. Н. Василенко^{1**}, В. Н. Костин¹, Н. П. Лукиных¹

- ¹ Институт физики металлов имени М.Н. Михеева УрО РАН, 620108 Екатеринбург, ул. Софьи Ковалевской, 18
 - * ksenofontov@imp.uran.ru; ** vasilenko@imp.uran.ru

Параметры, измеряемые в асимметричном цикле «коэрцитивный возврат – намагничивание», такие как индукция коэрцитиваного возврата, индукция инверсии коэрцитивной силы и другие, являются перспективными для проведения магнитной структуроскопии [1].

Целью работы было определение факторов, влияющих на воспроизводимость результатов при измерениях в цикле «коэрцитивный возврат – намагничивание». Для этого с помощью аппаратно-программной системы DIUS 1-21М были проведены измерения предельных петель гистерезиса и в асимметричном цикле «коэрцитивный возврат – намагничивание» на образцах из стали 20H2М размером $10\times10\times65$ мм с различными температурами закалки и отпуска. Измерения производились с использованием источников тока с различной разрешающей способностью.

В результате измерений были получены значения индукции коэрцитивного возврата B_{Hc} и индукции инверсии коэрцитивной силы B_{+Hc} и произведена оценка точности установки величины силы тока, соответствующей точке коэрцитивной силы (измерена минимальная магнитная индукция B_{min} в асимметричном цикле). Полученные значения представлены на рис. 1.

Установлено, что с уменьшением длины цикла перемагничивания величина B_{min} уменьшается, то есть становится дальше от 0. Это связано с магнитным последействием, вызванным действием вихревых токов и перераспределением намагниченности в составной магнитной цепи. При этом измеряемые значения B_{Hc} и B_{+Hc} увеличиваются.

Также наблюдается, что с уменьшением разрешения источника тока с 34,5 мА до 1,5 мА воспроизводимость результатов значительно улучшается: среднеквадратичное отклонение B_{min} уменьшается, зависимость B_{min} от температуры начинает носить линейный характер, максимальные среднеквадратичные отклонения B_{Hc} и B_{+Hc} также уменьшаются.

Величина B_{min} уменьшается с увеличением температуры отпуска, что может быть объяснено увеличением величины дифференциальной магнитной проницаемости, что приводит к увеличению плотности силы вихревых токов.

При комбинации мешающих факторов в виде малой длительности цикла перемагничивания и большой величины минимального изменения тока характер наблюдаемых зависимостей может значительно изменяться, что может привести к неверной интерпретации полученных результатов.

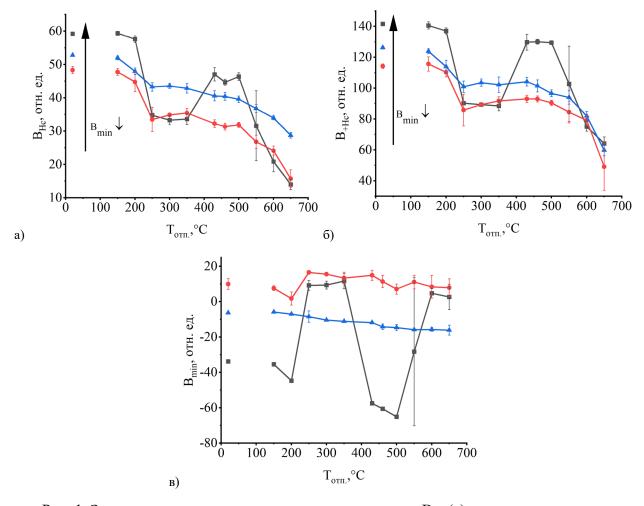


Рис. 1. Зависимости индукции коэрцитивного возврата B_{Hc} (а), индукции инверсии коэрцитивной силы B_{Hc} (б) и минимальной магнитной индукции B_{min} в цикле «коэрцитивный возврат — намагничивание» (в) от температуры отпуска для стали 20H2M для различных режимов перемагничивания: (■) 10сек., (•) 30 сек., (▲) 30 сек. с повышенным разрешением источника тока.

Работа выполнена в рамках государственного задания МИНОБРНАУКИ России («Диагностика» ("Diagnostics"), №122021000030-1).

ЛИТЕРАТУРА

1. Костин В.Н., Василенко О.Н., Сандомирский С.Г. Структурная чувствительность параметров несимметричного цикла «коэрцитивный возврат — намагничивание» термообработанных низкоуглеродистых сталей // Дефектоскопия. 2018. №. 1. С. 5—15. 2. Костин В.Н., Сажина Е.Ю., Царькова Т.П., Сташков А.Н. О соотношении величин остаточной намагниченности и изменения намагниченности на кривых возврата сталей и сплавов // Дефектоскопия. 2001. № 12. С. 37—46.